
CSE 8B Spring 2023
Assignment 7

Abstract Classes, Text IO, and Exception Handling
Due: Thursday, June 1 11:59 PM

Learning goals:
● Apply knowledge of Abstract and Concrete Classes, Text IO, and Exception Handling in

Java

Your grade will be determined by your most recent submission. If you submit to
Gradescope after the deadline, it will be marked late and the late penalty will apply
regardless of whether you had past submissions before the deadline.

If your code does not compile on Gradescope, you will receive an automatic zero on the
assignment.

Coding Style (10 points)
For this programming assignment, we will be enforcing the CSE 8B Coding Style
Guidelines. These guidelines can also be found on Canvas. Please ensure to have
COMPLETE file headers, class headers, and method headers, to use descriptive variable
names and proper indentation, and to avoid using magic numbers.

Part 0: Getting started with the starter code (0 points)
1. If using a personal computer, then ensure your Java software development environment

does not have any issues. If there are any issues, then review Assignment 1, or come to
the office/lab hours before you start Assignment 7.

2. First, navigate to the cse8b folder you created in Assignment 1 and create a new folder
named assignment7

3. Download the starter code. You can download the starter code from Piazza →
Resources → Homework → assignment7.zip. The starter code contains six files:
Assignment7.java, Directory.java, MyFile.java, FSComponent.java,
PA7_UML.pdf, and RootDirectory.java. Place the starter code within the
assignment7 folder you just created.

4. Compile the starter code within the assignment7 folder. You can compile all files using
the single command javac *.java and you should get a series of compiler errors since
you have not implemented the classes yet. The objective of this assignment is to get the
classes working by implementing the class methods and testing them.

https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html
https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html


5. You will be turning in all of the original .java files included in assignment7.zip and
more.

Part 1: Overview
For this assignment, you will implement a simplified abstraction of File System (FS). This FS will
be able to support creating, deleting, renaming, and moving virtual files and directories. The
image below is the Unified Modeling Language (UML) diagram for Assignment 7, showing the
relationships between different classes. If the image looks blurry in the write-up, then open
PA7_UML.pdf in your assignment7 directory.

In the UML diagram above, there are 3 abstract classes: FSComponent, Directory, and
MyFile. Likewise, we have 4 concrete classes: NormalFile, ZippedFile, SubDirectory, and
RootDirectory. Remember, the solid line with hollow triangle represents inheritance (extends).

After finishing this assignment, this is what your file structure should look like:

+-- assignment7/



| +-- FSComponent.java Edit this file (WILL BE GRADED)
| +-- MyFile.java Edit this file (WILL BE GRADED)
| +-- NormalFile.java Create and edit (WILL BE GRADED)
| +-- ZippedFile.java Create and edit (WILL BE GRADED)
| +-- Directory.java Edit this file (WILL BE GRADED)
| +-- SubDirectory.java Create and edit (WILL BE GRADED)
| +-- RootDirectory.java Do NOT change
| +-- Assignment7.java Add more tests (WILL BE GRADED)
| +-- PA7_UML.pdf UML Diagram

It is very important to organize the files as above to ensure that the provided methods will work
correctly. When you first download it, the starter code intentionally contains compiler errors
because some of the methods need to be implemented by you. You will run javac and java

from within the assignment7 directory after you finish implementing.

NOTE: do NOT change any of the methods that are implemented already. Do NOT forget to
adhere to the CSE 8B style guidelines.

NOTE: We will not be giving partial credit for incorrect output. Please make sure that the format
of your output matches EXACTLY with what’s expected.

If you have any questions regarding implementing/testing, please first check the Q&A at the
bottom of this document!

Be sure to compile your code often, so that you can catch compile errors early on! Recall, to

compile multiple Java files, use:

> javac *.java

Part 2: FSComponent.java

The FSComponent abstract class has a single instance variable name, getter and setter
associated with name, and two protected constructors. All of them are implemented.
Additionally, FSComponent defines four abstract methods (setParentDir(Directory dir),
isFile(), and isDirectory()) that need to be implemented by its subclasses. Do NOT
change these methods. Here is what you need to do:

1. public boolean equals(Object obj)



Override the public method equals inherited from Object class. An FSComponent object
is equal to another object if that object is of type FSComponent and if they have the
same names. Otherwise return false.

HINT: use the instanceof operator

Part 3: MyFile.java

The MyFile abstract class inherits directly from the FSComponent abstract class. MyFile has
one instance variable:

1. private Directory parentDir

The parent directory of the file. In other words, parentDir is the directory that contains
the current file.

MyFile starter code has setter and getter methods for this instance variable already
implemented. MyFile also contains two protected constructors; the no-arg constructor is
implemented for you. Do NOT change the constructor and other methods implemented in
the starter code. Later in the assignment, you will be writing more methods in MyFile. For now,
just implement the following constructor and other methods:

1. protected MyFile(String name)

Implement this constructor by initializing the name instance variable in its superclass.

2. public boolean isFile()

Returns true only if this FSComponent is a MyFile (which in this case, for us writing
code in the MyFile class, it always is!)

3. public boolean isDirectory()

Returns true only if this FSComponent is a Directory (which in this case, for us writing
code in the MyFile class, it always is not!)

4. public boolean equals(Object obj)

Override the parent’s equals method. A MyFile object is equal to another object if its
parent class’s equals() method returns true AND if this MyFile object has the same
parentDir as obj’s parentDir by reference. In other words, you must call
super.equals(), check their type equality, then check if these two objects’ parentDir
are equal by reference.



HINT: use the instanceof operator

5. public abstract void outputFileContents(String outputFileName)

Declare this method without a body. This method will eventually need to be overridden
by the concrete class that extends from MyFile. (More on this later)

Part 4: NormalFile.java
You will have to create this file from scratch. Ensure that the full file name (including the file
extension) is NormalFile.java.

The NormalFile class extends from the MyFile abstract class (use the extends keyword) and
contains one instance variable:

1. private String contents

A String variable that represents the contents of the file.

Note the concrete class NormalFile extends the abstract class MyFile (which contains the
abstract method outputFileContents()), which extends the abstract class FSComponent

(which contains the abstract methods setParentDir(), isFile(), and isDirectory()). The
starter code already implemented the abstract method setParentDir() in MyFile, and you
implemented isFile() and isDirectory() in MyFile. The only remaining abstract method is
outputFileContents(), which you will implement in NormalFile. Here is all of what you need
to do:

1. public NormalFile()

This is the no-arg constructor. You do not need to initialize anything in this constructor.

2. public NormalFile(String name, String contents)

Implement this constructor by initializing the name instance variable in its superclass.
Then, set the contents instance variable.

3. public String getContents()

Getter method for contents. Simply return contents.

4. public void setContents(String contents)

Setter method for contents. Simply set the instance variable to the (local variable)
contents that was passed in.

5. public void outputFileContents(String outputFileName) throws Exception



This method must write the contents field to a file in the current directory, where the file
has the same name as the string outputFileName. If contents is null or empty, then you
must throw an instance of the Exception class with the message "Empty file
contents!" (hint: create the instance using new Exception(String message));
otherwise, write contents and then terminate the line to the output file using
PrintWriter. If a file named outputFileName already exists in the current directory, then
overwrite the original file.

If an IOException is thrown during this process, then you must handle it gracefully within
this method by simply printing out the IO exception message (hint: use getMessage())
and then terminate the line to standard output.

6. public void inputFileContents(String inputFileName) throws Exception

This method must read in all contents from a file into the instance variable contents,
where the file has the same name as the string inputFIleName.

If an IOException is thrown during this process, then you must handle it gracefully within
this method by simply printing out the IO exception message (hint: use getMessage())
and then terminate the line to standard output.

7. public boolean equals(Object obj)

Override the equals() method. A NormalFile object is equal to another object if its
parent class’s equals() method returns true AND its instance variable contents

represent the same sequence of characters obj’s contents. In other words, you must call
super.equals(), check their type equality, then check if these two objects’ contents are
equal.

HINT: use the instanceof operator

8. public String toString()

This method returns the string representation of the NormalFile object. To ensure full
compatibility with the Gradescope Autograder, you must return the following
EXACTLY:

return "Normal file: " + this.getName();

Part 5: ZippedFile.java



You will have to create this file from scratch. Ensure that the full file name (including the file
extension) is ZippedFile.java.

The ZippedFile class extends from the MyFile abstract class (use the extends keyword).

Because ZippedFile is essentially a directory that has been compressed, and since its
contents must not be changed at any point in time, ZippedFile somewhat resembles the
Directory class (see below) but has an array of FSComponent objects rather than an
ArrayList like Directory does (its componentList). You will need to declare the following
member variable inside of the ZippedFile class:

private FSComponent[] componentArray;

LIke NormalFile, ZippedFile will implement outputFileContents() and override the
equals() and toString() methods. Here is all of what you need to do:

1. public ZippedFile()

This is the no-arg constructor. You do not need to initialize anything in this constructor.

2. public ZippedFile(String name, FSComponent[] componentArray)

Implement this constructor by setting the name instance variable in its grandparent class.
For this constructor, there’s one special thing: zipped file names must end in .zip!!
Check if the input variable name ends with .zip - if not, append .zip to the end of name
before initializing setting the grandparent’s instance variable. Otherwise, initialize the
grandparent’s name variable with the parameter as is. (Hint: use the endsWith method.
You may also want to use setName()). Then, set the componentArray member variable
to the componentArray parameter.

(A note for testing later: Recall that all unwanted changes made to the
componentArray outside of the ZippedFile class will still be reflected by the
componentArray member variable. This is just because setting the componentArray

member variable to the componentArray parameter only makes both references refer to
the same, singular array object, not two different arrays. Keep this in mind so you don’t
accidentally change the array referenced by componentArray and create confusing
situations!)

3. public void outputFileContents(String outputFileName) throws Exception

This method must write each of the names of the FSComponents stored in
componentArray on a new line in the file named outputFileName within the current
directory. If componentArray is null or its length is 0, then you must throw an instance
of the Exception class with the message "Empty file contents!"; otherwise, use
PrintWriter to write the file. If the file named outputFileName already exists in the
current directory, then overwrite the original file. For example, if componentArray has
length 2 and has two FSComponents whose names are "Hello.txt" and

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html#endsWith(java.lang.String)


"Person.java", a file named outputFileName in the current directory must contain the
following contents after the call to this method:

Hello.txt

Person.java

More specifically, the file must contain the contents: "Hello.txt\nPerson.java\n".

If an IOException is thrown during this process, then you must handle it gracefully within
this method by simply printing out the IO exception message (hint: use getMessage())
and then terminate the line to standard output.

4. public boolean equals(Object obj)

Override the equals() method. A ZippedFile object is equal to another object if its
parent class’s equals() method returns true AND if both componentArray contains the
exact same elements (by reference). If one is null and the other is not, then return
false. If both are null, then return true. Otherwise, compare the elements by
reference. Make sure to check for edge cases (e.g. difference lengths). Like before, you
should be calling the parent’s equals() method first, check their type equality, and then
compare their componentArray.

HINT: use the instanceof operator

5. public String toString()

This method returns the string representation of the ZippedFile object. To ensure full
compatibility with the Gradescope Autograder, return the following EXACTLY:

return "Zipped file: " + this.getName();

Part 6: Directory.java

The Directory abstract class inherits directly from the FSComponent abstract class. Directory
class has a list of FSComponent objects stored in componentList. You can think of this
componentList as a data structure that stores all files and directories under the current
directory. A no-arg constructor and the methods getComponentList(), setComponentList(),
and appendComponent() are implemented for you. Do NOT change the constructor and
other methods implemented in the starter code. HINT: Understand how
appendComponent() works.



For now, you need to complete the following methods:

1. protected Directory(String name)

Implement this constructor by initializing componentList to an empty ArrayList of
FSComponent objects and initializing the name instance variable (by using the input
parameter) in its superclass.

2. public boolean isFile()

Returns true only if this FSComponent is a MyFile (which in this case, for us writing
code in the Directory class, it always is not!!)

3. public boolean isDirectory()

Returns true only if this FSComponent is a Directory (which in this case, for us writing
code in the Directory class, it always is!)

4. public boolean addComponent(FSComponent newComp)

This method adds an FSComponent to its componentList. You can think of this method
as adding a new file or directory to the current directory. However, there are some rules
you need to follow when adding files or directories into the current directory.

● If newComp is a file, then there cannot be another file under the current directory
that has the same name as the name of newComp. If this is the case, then simply
return false. HINT: Use isFile to check if newComp is a File.

○ Note: name is a private String member declared in the FSComponent

class. How can you access this private member from inside the
Directory class?

● Similarly, if newComp is a directory, then there cannot be another directory under
the current directory that has the same name as the name of newComp. If this is
the case, then simply return false. HINT: Use isDirectory() to check if
newComp is a Directory.

● Otherwise, the newComp can be safely added to componentList. Simply do so by
adding to the end of the componentList. Then, set the parentDir of newComp to
the current directory and return true. (This is commonly referred to as two-way
binding, meaning that the parent object and the child object are aware of each
other and can change together). Once appended safely, return true. HINT: Look
at appendComponent().

5. public void outputComponentNames(String outputFileName) throws

Exception

This method must write each of the names of the FSComponents stored in
componentList on a new line in the file named outputFileName within the current
directory. If componentList is null or its length is 0, then you must throw an instance
of the Exception class with the error message "Empty directory contents!";
otherwise, use PrintWriter to write the file. If the file named outputFileName already



exists in the current directory, then overwrite the original file. For example, if
componentList has length 2 and has two FSComponents whose names are
"Hello.txt" and "Person.java", a file named outputFileName in the current
directory must contain the following contents after the call to this method:

Hello.txt

Person.java

More specifically, the file must contain the contents: "Hello.txt\nPerson.java\n".

If an IOException is thrown during this process, then you must handle it gracefully within
this method by simply printing out the IO exception message (hint: use getMessage())
and then terminate the line to standard output.

6. public boolean equals(Object obj)

Override the equals() method. A Directory object is equal to another object if its
parent class’s equals() method returns true AND if both componentList contains the
exact same elements (by reference). If one is null and the other is not, then return
false. If both are null, then return true. Make sure to check for edge cases (e.g.
difference sizes). Otherwise, compare the elements by reference. Like before, you
should be calling the parent’s equals()operator first, perform type checking, and then
compare componentList.

HINT: use the instanceof operator

Part 7: SubDirectory.java

You will have to create this file from scratch. Ensure that the full file name (including the file
extension) is SubDirectory.java.

The concrete class SubDirectory extends the abstract class Directory, which extends the
abstract class FSComponent (which contains the abstract methods setParentDir(), isFile(),
and isDirectory()). You implemented isFile() and isDirectory() in Directory. The only
remaining abstract method is setParentDir(), which you will implement in SubDirectory.

As seen in the UML, SubDirectory must have a private member variable parentDir. Here is
all of what you need to do:



1. public SubDirectory()

This is the no-arg constructor. You do not need to initialize anything in this constructor.

2. public SubDirectory(String name)

Implement this constructor by initializing the instance variable name in its superclass.

3. public void setParentDir(Directory parentDir)

This is a setter method. Simply set the parentDir member variable to the parentDir

parameter.

4. public Directory getParentDir()

This is a getter method. Simply return the parentDir member variable.

5. public boolean equals(Object obj)

Override the equals() method. A SubDirectory object is equal to another object if its
parent class’s equals() method returns true AND if this SubDirectory object has the
same parentDir as obj’s parentDir by reference. Make sure to check edge cases
where the parentDir can be null. Once again, you should be calling the parent’s
equals() method first, check for type equality, and then compare parentDir.

HINT: use the instanceof operator

6. public String toString()

This method must return the string representation of the SubDirectory object. To
ensure full compatibility with the Gradescope Autograder, you must return the
following EXACTLY:

return "Sub directory: " + this.getName();

Part 8: RootDirectory.java

This file is fully implemented for you in the starter code. The object instance created by this
class can only be the outmost layer in a file system. Please take a look at this file and
understand what RootDirectory does.



Note: For all methods that override it’s parent method, you must use the @Override

annotation

Part 9: Compile, Run and UnitTest Your Code (10 points)
First, read the Q&A for other specifications on what are some test cases that we will not be
testing.

Just like in previous assignments, in this part of the assignment, you need to implement
your own test cases in the method called unitTests in the Assignment7 class.

We already provide one testing method called testOne(). We have written code in
unitTests() that calls testOne(). Because we only provide one testing method, you are
encouraged to create as many testing methods as you think to be necessary to cover all the
edge cases.

To get full credit, create at least 5 more tester methods in Assignment7.java. In other
words, we expect to see a total of at least 6 tester methods that test a variety of situations
being called by unitTests(). If we do not see a variety of tests that are equivalent in scope to
the one provided, you may lose points. There are some comments above unitTests()

suggesting what to test. Each of your tests must be similar in scope and scale to the example
test case that we have provided in order to get full credit. We also suggest making some print
messages in each of your test cases so that you will know which test case is failing. The
unitTests() method must return true only when all the test cases are passed; otherwise, you
must return false.

In order to test some methods that throw exceptions, it is necessary to put your test in a
try-catch block. Handle the exception gracefully within the unit test method by printing out the
exception message if it occurs.

Remember that it is OK to have magic numbers in your unit tests.

You can compile and run your unit tests from main() using the following commands: (Make sure
you are in the correct directory, else navigate to the starter code using cd).
> javac *.java

> java Assignment7



Submission

You’re almost there! Please follow the instructions below carefully and use the exact
submission format. Because we will use scripts to grade, you may receive a zero if you do
not follow the same submission format.

1. Open Gradescope and login. Then, select this course → Assignment 7.
2. Click the DRAG & DROP section and directly select the EIGHT required files:

FSComponent.java, File.java, NormalFile.java, ZippedFile.java,
Directory.java, SubDirectory.java, RootDirectory.java, and
Assignment7.java. Drag & drop is fine. Please make sure you don't submit a zip, just
the separate files in one Gradescope submission. Make sure the names of the files are
correct.

3. You can resubmit unlimited times before the due date. Your score will depend on your
final (most recent) submission, even if your former submissions have higher scores.

4. Your submission should look like the below screenshot. If you have any questions, feel
free to post on Piazza!

https://piazza.com/class/lfub26biph36sp




Q&A

Is it possible that an object instantiated somewhere in the program is-a FSComponent but is
none of the concrete class objects?
This is not possible because only concrete classes can be instantiated. Any object that is-a
FSComponent must have an actual type of one of the concrete classes.

Can a directory contain a myfile and a subdirectory with the same name?
Yes, the only conflict is when two files have the same name or two subdirectories have the
same name under the same directory.

Can a directory contain a RootDirectory?
No. The RootDirectory can only be the outmost directory.

Can SubDirectory be the outmost directory?
Yes. SubDirectory can exist on its own and become the outmost directory.

Do we need to consider the case when the root directory or subdirectory does not contain a
single myfile or subdirectory？
Yes, this is certainly possible.

Can the same object instance appear multiple times under the structure of a Directory?
No. All object instances are unique.


